Cargando…
Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities
MOTIVATION: Antimicrobial peptides (AMPs) have the potential to inhibit multiple types of pathogens and to heal infections. Computational strategies can assist in characterizing novel AMPs from proteome or collections of synthetic sequences and discovering their functional abilities toward different...
Autores principales: | Pang, Yuxuan, Yao, Lantian, Xu, Jingyi, Wang, Zhuo, Lee, Tzong-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750108/ https://www.ncbi.nlm.nih.gov/pubmed/36326438 http://dx.doi.org/10.1093/bioinformatics/btac711 |
Ejemplares similares
-
Multi-label classification and features investigation of antimicrobial peptides with various functional classes
por: Chung, Chia-Ru, et al.
Publicado: (2023) -
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
por: Wang, Pu, et al.
Publicado: (2017) -
Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites
por: He, Jianjun, et al.
Publicado: (2012) -
Author Correction: Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
por: Wang, Pu, et al.
Publicado: (2018) -
StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture
por: Guan, Jiahui, et al.
Publicado: (2023)