Cargando…
Identifying the critical state of complex biological systems by the directed-network rank score method
MOTIVATION: Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying such a critical point or tipping point is essential for revealing...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750123/ https://www.ncbi.nlm.nih.gov/pubmed/36282843 http://dx.doi.org/10.1093/bioinformatics/btac707 |
_version_ | 1784850183941521408 |
---|---|
author | Zhong, Jiayuan Han, Chongyin Wang, Yangkai Chen, Pei Liu, Rui |
author_facet | Zhong, Jiayuan Han, Chongyin Wang, Yangkai Chen, Pei Liu, Rui |
author_sort | Zhong, Jiayuan |
collection | PubMed |
description | MOTIVATION: Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying such a critical point or tipping point is essential for revealing the underlying mechanism of complex biological systems. However, it is difficult to identify the tipping point since few significant differences in the critical state are detected in terms of traditional static measurements. RESULTS: In this study, by exploring the dynamic changes in gene cooperative effects between the before-transition and critical states, we presented a model-free approach, the directed-network rank score (DNRS), to detect the early-warning signal of critical transition in complex biological systems. The proposed method is applicable to both bulk and single-cell RNA-sequencing (scRNA-seq) data. This computational method was validated by the successful identification of the critical or pre-transition state for both simulated and six real datasets, including three scRNA-seq datasets of embryonic development and three tumor datasets. In addition, the functional and pathway enrichment analyses suggested that the corresponding DNRS signaling biomarkers were involved in key biological processes. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/zhongjiayuan/DNRS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9750123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97501232022-12-15 Identifying the critical state of complex biological systems by the directed-network rank score method Zhong, Jiayuan Han, Chongyin Wang, Yangkai Chen, Pei Liu, Rui Bioinformatics Original Paper MOTIVATION: Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying such a critical point or tipping point is essential for revealing the underlying mechanism of complex biological systems. However, it is difficult to identify the tipping point since few significant differences in the critical state are detected in terms of traditional static measurements. RESULTS: In this study, by exploring the dynamic changes in gene cooperative effects between the before-transition and critical states, we presented a model-free approach, the directed-network rank score (DNRS), to detect the early-warning signal of critical transition in complex biological systems. The proposed method is applicable to both bulk and single-cell RNA-sequencing (scRNA-seq) data. This computational method was validated by the successful identification of the critical or pre-transition state for both simulated and six real datasets, including three scRNA-seq datasets of embryonic development and three tumor datasets. In addition, the functional and pathway enrichment analyses suggested that the corresponding DNRS signaling biomarkers were involved in key biological processes. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/zhongjiayuan/DNRS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-10-25 /pmc/articles/PMC9750123/ /pubmed/36282843 http://dx.doi.org/10.1093/bioinformatics/btac707 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Zhong, Jiayuan Han, Chongyin Wang, Yangkai Chen, Pei Liu, Rui Identifying the critical state of complex biological systems by the directed-network rank score method |
title | Identifying the critical state of complex biological systems by the directed-network rank score method |
title_full | Identifying the critical state of complex biological systems by the directed-network rank score method |
title_fullStr | Identifying the critical state of complex biological systems by the directed-network rank score method |
title_full_unstemmed | Identifying the critical state of complex biological systems by the directed-network rank score method |
title_short | Identifying the critical state of complex biological systems by the directed-network rank score method |
title_sort | identifying the critical state of complex biological systems by the directed-network rank score method |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750123/ https://www.ncbi.nlm.nih.gov/pubmed/36282843 http://dx.doi.org/10.1093/bioinformatics/btac707 |
work_keys_str_mv | AT zhongjiayuan identifyingthecriticalstateofcomplexbiologicalsystemsbythedirectednetworkrankscoremethod AT hanchongyin identifyingthecriticalstateofcomplexbiologicalsystemsbythedirectednetworkrankscoremethod AT wangyangkai identifyingthecriticalstateofcomplexbiologicalsystemsbythedirectednetworkrankscoremethod AT chenpei identifyingthecriticalstateofcomplexbiologicalsystemsbythedirectednetworkrankscoremethod AT liurui identifyingthecriticalstateofcomplexbiologicalsystemsbythedirectednetworkrankscoremethod |