Cargando…
High-efficiency blue-emission crystalline organic light-emitting diodes sensitized by “hot exciton” fluorescent nanoaggregates
Sensitizing fluorescent materials is an effective way to maximally use excitons and obtain high-efficiency blue organic light-emitting diodes (OLEDs). However, it is a persistent challenge for present amorphous thin-film OLEDs to improve photon emission under low driving voltage, severely impeding t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750145/ https://www.ncbi.nlm.nih.gov/pubmed/36516245 http://dx.doi.org/10.1126/sciadv.add1757 |
Sumario: | Sensitizing fluorescent materials is an effective way to maximally use excitons and obtain high-efficiency blue organic light-emitting diodes (OLEDs). However, it is a persistent challenge for present amorphous thin-film OLEDs to improve photon emission under low driving voltage, severely impeding the development of OLED technology. Here, we propose a novel OLED architecture consisting of a crystalline host matrix (CHM) and embedded “hot exciton” nanoaggregates (HENAs), which effectively sensitize blue dopant (D) emission. Owing to the advantages of the crystalline thin-film route, the device exhibits largely enhanced blue photon output [Commission International de L’Eclairage coordinates of (0.15, 0.17)], with a low turn-on/operation voltage of 2.5 V (at 1 cd/m(2))/3.3 V (at 1000 cd/m(2)), an extremely low Joule heat loss ratio (7.8% at 1000 cd/m(2)), and a maximum external quantum efficiency (EQE) up to 9.14%. These areal photon output features have outperformed the present amorphous thin-film blue OLEDs with high EQE, demonstrating that the CHM-HENA-D OLED is promising for future OLEDs. |
---|