Cargando…
Improving COVID-19 CT classification of CNNs by learning parameter-efficient representation
The COVID-19 pandemic continues to spread rapidly over the world and causes a tremendous crisis in global human health and the economy. Its early detection and diagnosis are crucial for controlling the further spread. Many deep learning-based methods have been proposed to assist clinicians in automa...
Autores principales: | Xu, Yujia, Lam, Hak-Keung, Jia, Guangyu, Jiang, Jian, Liao, Junkai, Bao, Xinqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750504/ https://www.ncbi.nlm.nih.gov/pubmed/36543003 http://dx.doi.org/10.1016/j.compbiomed.2022.106417 |
Ejemplares similares
-
Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method
por: Jia, Guangyu, et al.
Publicado: (2021) -
MANet: A two-stage deep learning method for classification of COVID-19 from Chest X-ray images
por: Xu, Yujia, et al.
Publicado: (2021) -
Biomedical literature classification with a CNNs-based hybrid learning network
por: Yan, Yan, et al.
Publicado: (2018) -
Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation
por: Cui, Yibo, et al.
Publicado: (2020) -
The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach
por: Bao, Xinqi, et al.
Publicado: (2022)