Cargando…

Unravelling 3D growth in the moss Physcomitrium patens

The colonization of land by plants, and the greening of the terrestrial biosphere, was one of the most important events in the history of life on Earth. The transition of plants from water to land was accompanied, and largely facilitated, by the acquisition of apical cells with three or more cutting...

Descripción completa

Detalles Bibliográficos
Autor principal: Moody, Laura A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750851/
https://www.ncbi.nlm.nih.gov/pubmed/36342774
http://dx.doi.org/10.1042/EBC20220048
Descripción
Sumario:The colonization of land by plants, and the greening of the terrestrial biosphere, was one of the most important events in the history of life on Earth. The transition of plants from water to land was accompanied, and largely facilitated, by the acquisition of apical cells with three or more cutting faces (3D growth). This enabled plants to develop the morphological characteristics required to survive and reproduce effectively on land and to colonize progressively drier habitats. Most plants develop in such a way that makes genetic studies of 3D growth difficult as the onset of 3D growth is established early during embryo development. On the other hand, in the moss Physcomitrium patens, the onset of 3D growth is preceded by a protracted 2D filamentous phase of the life cycle that can be continuously propagated. P. patens is an ideal model system in which to identify the genetic toolkit underpinning the 2D to 3D growth transition, and this is because 3D growth is not a pre-requisite for survival. Thus, insights into the mechanisms underpinning the formation of apical cells and the subsequent establishment and maintenance of 3D growth have largely been gained through studies in P. patens. This review summarizes the most recently published articles that have provided new and important insights into the mechanisms underpinning 3D growth in P. patens.