Cargando…
Development and analysis of a comprehensive diagnostic model for aortic valve calcification using machine learning methods and artificial neural networks
BACKGROUND: Although advanced surgical and interventional treatments are available for advanced aortic valve calcification (AVC) with severe clinical symptoms, early diagnosis, and intervention is critical in order to reduce calcification progression and improve patient prognosis. The aim of this st...
Autores principales: | Xiong, Tao, Chen, Yan, Han, Shen, Zhang, Tian-Chen, Pu, Lei, Fan, Yu-Xin, Fan, Wei-Chen, Zhang, Ya-Yong, Li, Ya-Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751025/ https://www.ncbi.nlm.nih.gov/pubmed/36531717 http://dx.doi.org/10.3389/fcvm.2022.913776 |
Ejemplares similares
-
Bioinformatics and Machine Learning Methods to Identify FN1 as a Novel Biomarker of Aortic Valve Calcification
por: Xiong, Tao, et al.
Publicado: (2022) -
Decreased Glucagon-Like Peptide-1 Is Associated With Calcific Aortic Valve Disease: GLP-1 Suppresses the Calcification of Aortic Valve Interstitial Cells
por: Xiao, Fan, et al.
Publicado: (2021) -
Potential ferroptosis key genes in calcific aortic valve disease
por: Li, Xiong-Zhi, et al.
Publicado: (2022) -
NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease
por: Wang, Yidong, et al.
Publicado: (2021) -
Organ Culture Model of Aortic Valve Calcification
por: Chester, Adrian H., et al.
Publicado: (2021)