Cargando…
Design of standalone wireless impedance matching (SWIM) system for RF coils in MRI
The radio frequency (RF) power transfer efficiency of transmit coils and the signal-to-noise ratio (SNR) at the receive signal chain are directly dependent on the impedance matching condition presented by a loaded coil, tuned to the Larmor frequency. Sub-optimal impedance condition of receive coils...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751108/ https://www.ncbi.nlm.nih.gov/pubmed/36517622 http://dx.doi.org/10.1038/s41598-022-26143-9 |
Sumario: | The radio frequency (RF) power transfer efficiency of transmit coils and the signal-to-noise ratio (SNR) at the receive signal chain are directly dependent on the impedance matching condition presented by a loaded coil, tuned to the Larmor frequency. Sub-optimal impedance condition of receive coils significantly reduces coil sensitivity and image quality. In this study we propose a Standalone Wireless Impedance Matching (SWIM) system for RF coils to automatically compensate for the impedance mismatch caused by the loading effect at the target frequency. SWIM uses a built-in RF generator to produce a calibration signal, measure reflected power as feedback for loading change, and determine an optimal impedance. The matching network consists of a capacitor array with micro-electromechanical system (MEMS) RF switches to electronically cycle through different input impedance conditions. Along with automatic calibration, SWIM can also perform software detuning of RF receive coils. An Android mobile application was developed for real-time reflected power monitoring and controlling the SWIM system via Bluetooth. The SWIM system can automatically calibrate an RF coil in 3 s and the saline sample SNR was improved by 24% when compared to a loaded coil without retuning. Four different tomatoes were imaged to validate the performance of SWIM. |
---|