Cargando…
Machine learning models for predicting one-year survival in patients with metastatic gastric cancer who experienced upfront radical gastrectomy
Tumor metastasis is a common event in patients with gastric cancer (GC) who previously underwent curative gastrectomy. It is meaningful to employ high-volume clinical data for predicting the survival of metastatic GC patients. We aim to establish an improved machine learning (ML) classifier for pred...
Autores principales: | Zhang, Cheng, Zhang, Yi, Yang, Ya-Hui, Xu, Hui, Zhang, Xiao-Peng, Wu, Zhi-Jun, Xie, Min-Min, Feng, Ying, Feng, Chong, Ma, Tai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751187/ https://www.ncbi.nlm.nih.gov/pubmed/36533072 http://dx.doi.org/10.3389/fmolb.2022.937242 |
Ejemplares similares
-
Advances and Insights of APC-Asef Inhibitors for Metastatic Colorectal Cancer Therapy
por: Yang, Xiuyan, et al.
Publicado: (2021) -
Development of a Machine Learning-Based Autophagy-Related lncRNA Signature to Improve Prognosis Prediction in Osteosarcoma Patients
por: Zhang, Guang-Zhi, et al.
Publicado: (2021) -
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography
por: Zhou, Bo, et al.
Publicado: (2021) -
Prognostic Value of mRNAsi/Corrected mRNAsi Calculated by the One-Class Logistic Regression Machine-Learning Algorithm in Glioblastoma Within Multiple Datasets
por: Zhang, Mingwei, et al.
Publicado: (2021) -
The Key Role of Exosomes on the Pre-metastatic Niche Formation in Tumors
por: Yang, Xuyang, et al.
Publicado: (2021)