Cargando…
An AI-based approach for detecting cells and microbial byproducts in low volume scanning electron microscope images of biofilms
Microbially induced corrosion (MIC) of metal surfaces caused by biofilms has wide-ranging consequences. Analysis of biofilm images to understand the distribution of morphological components in images such as microbial cells, MIC byproducts, and metal surfaces non-occluded by cells can provide insigh...
Autores principales: | Abeyrathna, Dilanga, Ashaduzzaman, Md, Malshe, Milind, Kalimuthu, Jawaharraj, Gadhamshetty, Venkataramana, Chundi, Parvathi, Subramaniam, Mahadevan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751328/ https://www.ncbi.nlm.nih.gov/pubmed/36532463 http://dx.doi.org/10.3389/fmicb.2022.996400 |
Ejemplares similares
-
Convergence research and training in computational bioengineering: a case study on AI/ML driven biofilm-material interaction discovery
por: Zylla, Jessica LS, et al.
Publicado: (2023) -
Transcriptome-wide marker gene expression analysis of stress-responsive sulfate-reducing bacteria
por: Jawaharraj, Kalimuthu, et al.
Publicado: (2023) -
A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
por: Luo, Ting L., et al.
Publicado: (2018) -
Scanning electron microscopic analysis of adherent bacterial biofilms associated with peri‐implantitis
por: Chang, Jae W., et al.
Publicado: (2023) -
Deep learning strategies for addressing issues with small datasets in 2D materials research: Microbial Corrosion
por: Allen, Cody, et al.
Publicado: (2022)