Cargando…
Physical-model guided self-distillation network for single image dehazing
MOTIVATION: Image dehazing, as a key prerequisite of high-level computer vision tasks, has gained extensive attention in recent years. Traditional model-based methods acquire dehazed images via the atmospheric scattering model, which dehazed favorably but often causes artifacts due to the error of p...
Autores principales: | Lan, Yunwei, Cui, Zhigao, Su, Yanzhao, Wang, Nian, Li, Aihua, Han, Deshuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751373/ https://www.ncbi.nlm.nih.gov/pubmed/36531917 http://dx.doi.org/10.3389/fnbot.2022.1036465 |
Ejemplares similares
-
Online knowledge distillation network for single image dehazing
por: Lan, Yunwei, et al.
Publicado: (2022) -
Transformer-based progressive residual network for single image dehazing
por: Yang, Zhe, et al.
Publicado: (2022) -
Deep guided transformer dehazing network
por: Zhang, Shengdong, et al.
Publicado: (2023) -
High-Resolution Representations Network for Single Image Dehazing
por: Han, Wensheng, et al.
Publicado: (2022) -
Single image mixed dehazing method based on numerical iterative model and DehazeNet
por: Jiao, Wenjiang, et al.
Publicado: (2021)