Cargando…
Immune landscape-based machine-learning–assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma
INTRODUCTION: As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly he...
Autores principales: | Li, Haiyan, He, Jian, Li, Menglong, Li, Kun, Pu, Xuemei, Guo, Yanzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751405/ https://www.ncbi.nlm.nih.gov/pubmed/36532035 http://dx.doi.org/10.3389/fimmu.2022.1027631 |
Ejemplares similares
-
A new molecular subclassification and in silico predictions for diagnosis and prognosis of papillary thyroid cancer by alternative splicing profile
por: Li, Haiyan, et al.
Publicado: (2023) -
Comprehensive Analysis of the Tumor Immune Microenvironment Landscape in Glioblastoma Reveals Tumor Heterogeneity and Implications for Prognosis and Immunotherapy
por: Zhao, Rongrong, et al.
Publicado: (2022) -
Glioblastoma Immune Landscape and the Potential of New Immunotherapies
por: Daubon, Thomas, et al.
Publicado: (2020) -
Subclassification of Newly Diagnosed Glioblastomas through an Immunohistochemical Approach
por: Conroy, Siobhan, et al.
Publicado: (2014) -
Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape
por: Li, Shiqi, et al.
Publicado: (2022)