Cargando…
428. Deep-Learning Based Predictive Model for Patients with Positive MRSA Cultures Using Time-Series Electronic Health Records
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the common pathogens leading to significant morbidity and mortality in the hospital. This pathogen requires specific empirical antibiotics. Hence, identifying the personalized risks of this pathogen likely optimizes the usage o...
Autores principales: | Nigo, Masayuki, Rasmy, Laila, Xie, Ziqian, Septimus, Edward J, Zhi, Degui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751551/ http://dx.doi.org/10.1093/ofid/ofac492.503 |
Ejemplares similares
-
63. PK-RNN-V: A Deep Learning Model for Vancomycin Therapeutic Drug Monitoring using Electronic Health Record Data
por: Masayuki, Nigo, et al.
Publicado: (2021) -
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
por: Rasmy, Laila, et al.
Publicado: (2021) -
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
por: Rasmy, Laila, et al.
Publicado: (2022) -
Real World Long-term Assessment of The Efficacy of Tocilizumab in Patients with COVID-19: Results From A Large De-identified Multicenter Electronic Health Record Dataset in the United States
por: Nigo, Masayuki, et al.
Publicado: (2021) -
Time-sensitive clinical concept embeddings learned from large electronic health records
por: Xiang, Yang, et al.
Publicado: (2019)