Cargando…
Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia
Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751664/ https://www.ncbi.nlm.nih.gov/pubmed/36532314 http://dx.doi.org/10.1002/pul2.12167 |
_version_ | 1784850527623839744 |
---|---|
author | Park, Saejeong Ma, Zhiyuan Zarkada, Georgia Papangeli, Irinna Paluri, Sarin Nazo, Nour Rivera‐Molina, Felix Toomre, Derek Rajagopal, Sudarshan Chun, Hyung J. |
author_facet | Park, Saejeong Ma, Zhiyuan Zarkada, Georgia Papangeli, Irinna Paluri, Sarin Nazo, Nour Rivera‐Molina, Felix Toomre, Derek Rajagopal, Sudarshan Chun, Hyung J. |
author_sort | Park, Saejeong |
collection | PubMed |
description | Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how β‐arrestins, intracellular proteins that regulate agonist‐mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to β‐arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of β‐arrestin 1 and β‐arrestin 2. We found that β‐arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of β‐arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. β‐arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, β‐arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR‐II), whose disruption similarly led to an impaired endothelial shear response. β‐arrestins also regulated Smad transcription factor phosphorylation by BMPR‐II. Mice with endothelial specific deletion of β‐arrestin 1 and β‐arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial β‐arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR‐II and contribute to vascular development. |
format | Online Article Text |
id | pubmed-9751664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97516642022-12-15 Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia Park, Saejeong Ma, Zhiyuan Zarkada, Georgia Papangeli, Irinna Paluri, Sarin Nazo, Nour Rivera‐Molina, Felix Toomre, Derek Rajagopal, Sudarshan Chun, Hyung J. Pulm Circ Research Articles Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how β‐arrestins, intracellular proteins that regulate agonist‐mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to β‐arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of β‐arrestin 1 and β‐arrestin 2. We found that β‐arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of β‐arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. β‐arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, β‐arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR‐II), whose disruption similarly led to an impaired endothelial shear response. β‐arrestins also regulated Smad transcription factor phosphorylation by BMPR‐II. Mice with endothelial specific deletion of β‐arrestin 1 and β‐arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial β‐arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR‐II and contribute to vascular development. John Wiley and Sons Inc. 2022-10-01 /pmc/articles/PMC9751664/ /pubmed/36532314 http://dx.doi.org/10.1002/pul2.12167 Text en © 2022 The Authors. Pulmonary Circulation published by Wiley Periodicals LLC on behalf of the Pulmonary Vascular Research Institute. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Park, Saejeong Ma, Zhiyuan Zarkada, Georgia Papangeli, Irinna Paluri, Sarin Nazo, Nour Rivera‐Molina, Felix Toomre, Derek Rajagopal, Sudarshan Chun, Hyung J. Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title | Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title_full | Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title_fullStr | Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title_full_unstemmed | Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title_short | Endothelial β‐arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia |
title_sort | endothelial β‐arrestins regulate mechanotransduction by the type ii bone morphogenetic protein receptor in primary cilia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751664/ https://www.ncbi.nlm.nih.gov/pubmed/36532314 http://dx.doi.org/10.1002/pul2.12167 |
work_keys_str_mv | AT parksaejeong endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT mazhiyuan endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT zarkadageorgia endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT papangeliirinna endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT palurisarin endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT nazonour endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT riveramolinafelix endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT toomrederek endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT rajagopalsudarshan endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia AT chunhyungj endothelialbarrestinsregulatemechanotransductionbythetypeiibonemorphogeneticproteinreceptorinprimarycilia |