Cargando…
A systematic review and meta-analysis on antimicrobial resistance in marine bivalves
Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751792/ https://www.ncbi.nlm.nih.gov/pubmed/36532500 http://dx.doi.org/10.3389/fmicb.2022.1040568 |
_version_ | 1784850559560318976 |
---|---|
author | Albini, Elisa Orso, Massimiliano Cozzolino, Francesco Sacchini, Luca Leoni, Francesca Magistrali, Chiara Francesca |
author_facet | Albini, Elisa Orso, Massimiliano Cozzolino, Francesco Sacchini, Luca Leoni, Francesca Magistrali, Chiara Francesca |
author_sort | Albini, Elisa |
collection | PubMed |
description | Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comprehensive searches of MEDLINE, EMBASE, and Web of Science were carried out, based upon a registered protocol (PROSPERO), and following the preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The methodological quality of the included studies was assessed using a modified Hoy checklist. Meta-analyses of prevalence were carried out using random-effects models. In total, 103 articles were selected from 1,280 records and were included in the final analysis. The studies were from Asia (n = 54), Europe (n = 27), South and North America (n = 10 and n = 6, respectively), Africa (n = 2), Oceania (n = 1), and multicentre and intercontinental (n = 3). The meta-analysis of multiple antibiotic resistance (MAR) index revealed Aeromonas spp. as the genus with the highest prevalence of AMR (37%), followed by Vibrio spp. (34%), Salmonella spp. (18%), and Escherichia coli (15%). Resistance to third/fourth/fifth generation cephalosporins and fluoroquinolones, two highest priority, critically important antimicrobials (HPCIA), was recorded in approximately 10% of E. coli isolates. Resistance to carbapenems was very low (<2%) in Salmonella spp. and in E. coli, but was found in 5% of Vibrio spp. and in more than a third of Aeromonas spp. isolates. In aquatic bacteria, resistance to carbapenems was higher in Asian than in European isolates. Our study shows the presence of antibiotic resistant bacteria (ARB), including bacteria resistant to HPCIA, in marine bivalves, posing a risk for consumers. |
format | Online Article Text |
id | pubmed-9751792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97517922022-12-16 A systematic review and meta-analysis on antimicrobial resistance in marine bivalves Albini, Elisa Orso, Massimiliano Cozzolino, Francesco Sacchini, Luca Leoni, Francesca Magistrali, Chiara Francesca Front Microbiol Microbiology Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comprehensive searches of MEDLINE, EMBASE, and Web of Science were carried out, based upon a registered protocol (PROSPERO), and following the preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The methodological quality of the included studies was assessed using a modified Hoy checklist. Meta-analyses of prevalence were carried out using random-effects models. In total, 103 articles were selected from 1,280 records and were included in the final analysis. The studies were from Asia (n = 54), Europe (n = 27), South and North America (n = 10 and n = 6, respectively), Africa (n = 2), Oceania (n = 1), and multicentre and intercontinental (n = 3). The meta-analysis of multiple antibiotic resistance (MAR) index revealed Aeromonas spp. as the genus with the highest prevalence of AMR (37%), followed by Vibrio spp. (34%), Salmonella spp. (18%), and Escherichia coli (15%). Resistance to third/fourth/fifth generation cephalosporins and fluoroquinolones, two highest priority, critically important antimicrobials (HPCIA), was recorded in approximately 10% of E. coli isolates. Resistance to carbapenems was very low (<2%) in Salmonella spp. and in E. coli, but was found in 5% of Vibrio spp. and in more than a third of Aeromonas spp. isolates. In aquatic bacteria, resistance to carbapenems was higher in Asian than in European isolates. Our study shows the presence of antibiotic resistant bacteria (ARB), including bacteria resistant to HPCIA, in marine bivalves, posing a risk for consumers. Frontiers Media S.A. 2022-12-01 /pmc/articles/PMC9751792/ /pubmed/36532500 http://dx.doi.org/10.3389/fmicb.2022.1040568 Text en Copyright © 2022 Albini, Orso, Cozzolino, Sacchini, Leoni and Magistrali. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Albini, Elisa Orso, Massimiliano Cozzolino, Francesco Sacchini, Luca Leoni, Francesca Magistrali, Chiara Francesca A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title | A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title_full | A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title_fullStr | A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title_full_unstemmed | A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title_short | A systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
title_sort | systematic review and meta-analysis on antimicrobial resistance in marine bivalves |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751792/ https://www.ncbi.nlm.nih.gov/pubmed/36532500 http://dx.doi.org/10.3389/fmicb.2022.1040568 |
work_keys_str_mv | AT albinielisa asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT orsomassimiliano asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT cozzolinofrancesco asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT sacchiniluca asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT leonifrancesca asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT magistralichiarafrancesca asystematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT albinielisa systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT orsomassimiliano systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT cozzolinofrancesco systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT sacchiniluca systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT leonifrancesca systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves AT magistralichiarafrancesca systematicreviewandmetaanalysisonantimicrobialresistanceinmarinebivalves |