Cargando…
Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers
INTRODUCTION: Despite the many benefits immunotherapy has brought to patients with different cancers, its clinical applications and improvements are still hindered by drug resistance. Fostering a reliable approach to identifying sufferers who are sensitive to certain immunotherapeutic agents is of g...
Autores principales: | Jin, Wenyi, Yang, Qian, Chi, Hao, Wei, Kongyuan, Zhang, Pengpeng, Zhao, Guodong, Chen, Shi, Xia, Zhijia, Li, Xiaosong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751999/ https://www.ncbi.nlm.nih.gov/pubmed/36532083 http://dx.doi.org/10.3389/fimmu.2022.1025330 |
Ejemplares similares
-
IL-7: A promising adjuvant ensuring effective T cell responses and memory in combination with cancer vaccines?
por: Zhao, Yue, et al.
Publicado: (2022) -
Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures
por: Zhang, Xiao, et al.
Publicado: (2023) -
Robust Prediction of Prognosis and Immunotherapeutic Response for Clear Cell Renal Cell Carcinoma Through Deep Learning Algorithm
por: Chen, Siteng, et al.
Publicado: (2022) -
Revealing the role of regulatory T cells in the tumor microenvironment of lung adenocarcinoma: a novel prognostic and immunotherapeutic signature
por: Zhang, Pengpeng, et al.
Publicado: (2023) -
Editorial: Targeting metabolism to activate T cells and enhance the efficacy of checkpoint blockade immunotherapy in solid tumors
por: Xia, Zhijia, et al.
Publicado: (2023)