Cargando…
Siamese hierarchical feature fusion transformer for efficient tracking
Object tracking is a fundamental task in computer vision. Recent years, most of the tracking algorithms are based on deep networks. Trackers with deeper backbones are computationally expensive and can hardly meet the real-time requirements on edge platforms. Lightweight networks are widely used to t...
Autores principales: | Dai, Jiahai, Fu, Yunhao, Wang, Songxin, Chang, Yuchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9752039/ https://www.ncbi.nlm.nih.gov/pubmed/36531916 http://dx.doi.org/10.3389/fnbot.2022.1082346 |
Ejemplares similares
-
SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking
por: Hu, Xiuhua, et al.
Publicado: (2023) -
SiamHAS: Siamese Tracker with Hierarchical Attention Strategy for Aerial Tracking
por: Liu, Faxue, et al.
Publicado: (2023) -
Anchor free based Siamese network tracker with transformer for RGB-T tracking
por: Fan, Liangsong, et al.
Publicado: (2023) -
A Siamese tracker with “dynamic–static” dual-template fusion and dynamic template adaptive update
por: Sun, Dongyue, et al.
Publicado: (2023) -
Siamese Tracking from Single Point Initialization
por: Xu, Zheng, et al.
Publicado: (2019)