Cargando…
Automatic instance segmentation of orchard canopy in unmanned aerial vehicle imagery using deep learning
The widespread use of unmanned aerial vehicles (UAV) is significant for the effective management of orchards in the context of precision agriculture. To reduce the traditional mode of continuous spraying, variable target spraying machines require detailed information about tree canopy. Although deep...
Autores principales: | Zhang, Weirong, Chen, Xuegeng, Qi, Jiangtao, Yang, Sisi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9752849/ https://www.ncbi.nlm.nih.gov/pubmed/36531373 http://dx.doi.org/10.3389/fpls.2022.1041791 |
Ejemplares similares
-
Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials
por: Zhang, Jing, et al.
Publicado: (2019) -
Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data
por: Wang, Zhonglin, et al.
Publicado: (2022) -
Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning
por: Bellis, Emily S., et al.
Publicado: (2022) -
Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery
por: Matese, Alessandro, et al.
Publicado: (2022) -
Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature
por: Perich, Gregor, et al.
Publicado: (2020)