Cargando…
Tackling the challenges of group network inference from intracranial EEG data
INTRODUCTION: Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain net...
Autores principales: | Pidnebesna, Anna, Sanda, Pavel, Kalina, Adam, Hammer, Jiri, Marusic, Petr, Vlcek, Kamil, Hlinka, Jaroslav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9752888/ https://www.ncbi.nlm.nih.gov/pubmed/36532288 http://dx.doi.org/10.3389/fnins.2022.1061867 |
Ejemplares similares
-
Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG
por: Moraresku, Sofiia, et al.
Publicado: (2023) -
Mapping the Scene and Object Processing Networks by Intracranial EEG
por: Vlcek, Kamil, et al.
Publicado: (2020) -
Typicality of functional connectivity robustly captures motion artifacts in rs‐fMRI across datasets, atlases, and preprocessing pipelines
por: Kopal, Jakub, et al.
Publicado: (2020) -
Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model
por: Hammer, Jiří, et al.
Publicado: (2016) -
Computational modeling allows unsupervised classification of epileptic brain states across species
por: Dallmer-Zerbe, Isa, et al.
Publicado: (2023)