Cargando…

Graphene Nanoplatelet/Multiwalled Carbon Nanotube/Polypyrrole Hybrid Fillers in Polyurethane Nanohybrids with 3D Conductive Networks for EMI Shielding

[Image: see text] This work reports the preparation of graphene nanoplatelet (GNP)/multiwalled carbon nanotube (MWCNT)/polypyrrole (PPy) hybrid fillers via in situ chemical oxidative polymerization with the addition of a cationic surfactant, hexadecyltrimethylammonium bromide. These hybrid fillers w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Chih-Lung, Li, Jia-Wun, Chen, Yan-Feng, Chen, Jian-Xun, Cheng, Chih-Chia, Chiu, Chih-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753105/
https://www.ncbi.nlm.nih.gov/pubmed/36530238
http://dx.doi.org/10.1021/acsomega.2c06613
Descripción
Sumario:[Image: see text] This work reports the preparation of graphene nanoplatelet (GNP)/multiwalled carbon nanotube (MWCNT)/polypyrrole (PPy) hybrid fillers via in situ chemical oxidative polymerization with the addition of a cationic surfactant, hexadecyltrimethylammonium bromide. These hybrid fillers were incorporated into polyurethane (PU) to prepare GNP/MWCNT/PPy/PU nanohybrids. The electrical conductivity of the nanohybrids was synergistically enhanced by the high conductivity of the hybrid fillers. Furthermore, the electromagnetic interference (EMI) shielding effectiveness (SE) was greatly increased by interfacial polarization between the GNPs, MWCNTs, PPy, and PU. The optimal formulation for the preparation of GNP/MWCNT/PPy three-dimensional (3D) nanostructures was determined by optimization experiments. Using this formulation, we successfully prepared GNP/PPy nanolayers (two-dimensional) that are extensively covered by MWCNT/PPy nanowires (one-dimensional), which interconnect to form GNP/MWCNT/PPy 3D nanostructures. When incorporated into a PU matrix to form a nanohybrid, these 3D nanostructures form a continuous network of conductive GNP–PPy–CNT–PPy–GNP paths. The EMI SE of the nanohybrid is 35–40 dB at 30–1800 MHz, which is sufficient to shield over 99.9% of electromagnetic waves. Therefore, this EMI shielding material has excellent prospects for commercial use. In summary, a nanohybrid with excellent EMI SE performance was prepared using a facile and scalable method and was shown to have great commercial potential.