Cargando…
A comparative study between deep learning and radiomics models in grading liver tumors using hepatobiliary phase contrast-enhanced MR images
PURPOSE: To compare a deep learning model with a radiomics model in differentiating high-grade (LR-3, LR-4, LR-5) liver imaging reporting and data system (LI-RADS) liver tumors from low-grade (LR-1, LR-2) LI-RADS tumors based on the contrast-enhanced magnetic resonance images. METHODS: Magnetic reso...
Autores principales: | Du, Lixin, Yuan, Jianpeng, Gan, Meng, Li, Zhigang, Wang, Pan, Hou, Zujun, Wang, Cong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753333/ https://www.ncbi.nlm.nih.gov/pubmed/36517762 http://dx.doi.org/10.1186/s12880-022-00946-8 |
Ejemplares similares
-
Quantification of contrast agent uptake in the hepatobiliary phase helps to differentiate hepatocellular carcinoma grade
por: Haimerl, Michael, et al.
Publicado: (2021) -
Radiomics nomogram for prediction of glypican-3 positive hepatocellular carcinoma based on hepatobiliary phase imaging
por: Zhang, Ning, et al.
Publicado: (2023) -
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
por: Mammadov, Orkhan, et al.
Publicado: (2022) -
MRI with hepatobiliary contrast
por: Jhaveri, Kartik S
Publicado: (2015) -
Radiomics Analysis of MR Imaging with Gd-EOB-DTPA for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Investigation and Comparison of Different Hepatobiliary Phase Delay Times
por: Zhang, Shuai, et al.
Publicado: (2021)