Cargando…

3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation

BACKGROUND: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular ano...

Descripción completa

Detalles Bibliográficos
Autores principales: Uus, Alena U., van Poppel, Milou P. M., Steinweg, Johannes K., Grigorescu, Irina, Ramirez Gilliland, Paula, Roberts, Thomas A., Egloff Collado, Alexia, Rutherford, Mary A., Hajnal, Joseph V., Lloyd, David F. A., Pushparajah, Kuberan, Deprez, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753334/
https://www.ncbi.nlm.nih.gov/pubmed/36517850
http://dx.doi.org/10.1186/s12968-022-00902-z
_version_ 1784850941684482048
author Uus, Alena U.
van Poppel, Milou P. M.
Steinweg, Johannes K.
Grigorescu, Irina
Ramirez Gilliland, Paula
Roberts, Thomas A.
Egloff Collado, Alexia
Rutherford, Mary A.
Hajnal, Joseph V.
Lloyd, David F. A.
Pushparajah, Kuberan
Deprez, Maria
author_facet Uus, Alena U.
van Poppel, Milou P. M.
Steinweg, Johannes K.
Grigorescu, Irina
Ramirez Gilliland, Paula
Roberts, Thomas A.
Egloff Collado, Alexia
Rutherford, Mary A.
Hajnal, Joseph V.
Lloyd, David F. A.
Pushparajah, Kuberan
Deprez, Maria
author_sort Uus, Alena U.
collection PubMed
description BACKGROUND: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS: In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS: We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS: This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-022-00902-z.
format Online
Article
Text
id pubmed-9753334
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-97533342022-12-16 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation Uus, Alena U. van Poppel, Milou P. M. Steinweg, Johannes K. Grigorescu, Irina Ramirez Gilliland, Paula Roberts, Thomas A. Egloff Collado, Alexia Rutherford, Mary A. Hajnal, Joseph V. Lloyd, David F. A. Pushparajah, Kuberan Deprez, Maria J Cardiovasc Magn Reson Research BACKGROUND: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS: In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS: We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS: This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-022-00902-z. BioMed Central 2022-12-15 /pmc/articles/PMC9753334/ /pubmed/36517850 http://dx.doi.org/10.1186/s12968-022-00902-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Uus, Alena U.
van Poppel, Milou P. M.
Steinweg, Johannes K.
Grigorescu, Irina
Ramirez Gilliland, Paula
Roberts, Thomas A.
Egloff Collado, Alexia
Rutherford, Mary A.
Hajnal, Joseph V.
Lloyd, David F. A.
Pushparajah, Kuberan
Deprez, Maria
3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title_full 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title_fullStr 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title_full_unstemmed 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title_short 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
title_sort 3d black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753334/
https://www.ncbi.nlm.nih.gov/pubmed/36517850
http://dx.doi.org/10.1186/s12968-022-00902-z
work_keys_str_mv AT uusalenau 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT vanpoppelmiloupm 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT steinwegjohannesk 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT grigorescuirina 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT ramirezgillilandpaula 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT robertsthomasa 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT egloffcolladoalexia 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT rutherfordmarya 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT hajnaljosephv 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT lloyddavidfa 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT pushparajahkuberan 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation
AT deprezmaria 3dblackbloodcardiovascularmagneticresonanceatlasesofcongenitalaorticarchanomaliesandthenormalfetalheartapplicationtoautomatedmultilabelsegmentation