Cargando…

Major histocompatibility complex I‐induced endoplasmic reticulum stress mediates the secretion of pro‐inflammatory muscle‐derived cytokines

Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Thoma, Anastasia, Earl, Kate E., Goljanek‐Whysall, Katarzyna, Lightfoot, Adam P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753450/
https://www.ncbi.nlm.nih.gov/pubmed/36426551
http://dx.doi.org/10.1111/jcmm.17621
Descripción
Sumario:Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle‐derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H‐2k(b) vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T‐cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro‐inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in‐part by the ER stress pathway.