Cargando…
Bilateral adaptive graph convolutional network on CT based Covid-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning
Coronavirus disease (COVID-19) has caused a worldwide pandemic, putting millions of people’s health and lives in jeopardy. Detecting infected patients early on chest computed tomography (CT) is critical in combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance learning...
Autores principales: | Meng, Yanda, Bridge, Joshua, Addison, Cliff, Wang, Manhui, Merritt, Cristin, Franks, Stu, Mackey, Maria, Messenger, Steve, Sun, Renrong, Fitzmaurice, Thomas, McCann, Caroline, Li, Qiang, Zhao, Yitian, Zheng, Yalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753459/ https://www.ncbi.nlm.nih.gov/pubmed/36574737 http://dx.doi.org/10.1016/j.media.2022.102722 |
Ejemplares similares
-
Development and external validation of a mixed-effects deep learning model to diagnose COVID-19 from CT imaging
por: Bridge, Joshua, et al.
Publicado: (2023) -
Instance-based generalization for human judgments about uncertainty
por: Schustek, Philipp, et al.
Publicado: (2018) -
Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis
por: Xu, Xinzheng, et al.
Publicado: (2022) -
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
por: Ryu, Seongok, et al.
Publicado: (2019) -
FTRLIM: Distributed Instance Matching Framework for Large-Scale Knowledge Graph Fusion
por: Zhu, Hongming, et al.
Publicado: (2021)