Cargando…
Exploring Optimal Reaction Conditions Guided by Graph Neural Networks and Bayesian Optimization
[Image: see text] The optimization of organic reaction conditions to obtain the target product in high yield is crucial to avoid expensive and time-consuming chemical experiments. Advancements in artificial intelligence have enabled various data-driven approaches to predict suitable chemical reactio...
Autores principales: | Kwon, Youngchun, Lee, Dongseon, Kim, Jin Woo, Choi, Youn-Suk, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753507/ https://www.ncbi.nlm.nih.gov/pubmed/36530311 http://dx.doi.org/10.1021/acsomega.2c05165 |
Ejemplares similares
-
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Compressed graph representation for scalable molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2020) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Molecular search by NMR spectrum based on evaluation of matching between spectrum and molecule
por: Kwon, Youngchun, et al.
Publicado: (2021) -
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
por: Ryu, Seongok, et al.
Publicado: (2019)