Cargando…
Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations
[Image: see text] Enhanced sampling methods are indispensable in computational chemistry and physics, where atomistic simulations cannot exhaustively sample the high-dimensional configuration space of dynamical systems due to the sampling problem. A class of such enhanced sampling methods works by i...
Autores principales: | Rydzewski, Jakub, Chen, Ming, Ghosh, Tushar K., Valsson, Omar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753586/ https://www.ncbi.nlm.nih.gov/pubmed/36367826 http://dx.doi.org/10.1021/acs.jctc.2c00873 |
Ejemplares similares
-
Multiscale Reweighted Stochastic Embedding: Deep Learning
of Collective Variables for Enhanced Sampling
por: Rydzewski, Jakub, et al.
Publicado: (2021) -
Selecting High-Dimensional
Representations of Physical
Systems by Reweighted Diffusion Maps
por: Rydzewski, Jakub
Publicado: (2023) -
HAMMER: Reweighting tool for simulated data samples
por: Duell, Stephan, et al.
Publicado: (2017) -
Spectral Map:
Embedding Slow Kinetics in Collective
Variables
por: Rydzewski, Jakub
Publicado: (2023) -
Collective variable-based enhanced sampling and machine learning
por: Chen, Ming
Publicado: (2021)