Cargando…

Martini 3 Coarse-Grained Force Field for Carbohydrates

[Image: see text] The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strate...

Descripción completa

Detalles Bibliográficos
Autores principales: Grünewald, Fabian, Punt, Mats H., Jefferys, Elizabeth E., Vainikka, Petteri A., König, Melanie, Virtanen, Valtteri, Meyer, Travis A., Pezeshkian, Weria, Gormley, Adam J., Karonen, Maarit, Sansom, Mark S. P., Souza, Paulo C. T., Marrink, Siewert J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753587/
https://www.ncbi.nlm.nih.gov/pubmed/36342474
http://dx.doi.org/10.1021/acs.jctc.2c00757
_version_ 1784850996290125824
author Grünewald, Fabian
Punt, Mats H.
Jefferys, Elizabeth E.
Vainikka, Petteri A.
König, Melanie
Virtanen, Valtteri
Meyer, Travis A.
Pezeshkian, Weria
Gormley, Adam J.
Karonen, Maarit
Sansom, Mark S. P.
Souza, Paulo C. T.
Marrink, Siewert J.
author_facet Grünewald, Fabian
Punt, Mats H.
Jefferys, Elizabeth E.
Vainikka, Petteri A.
König, Melanie
Virtanen, Valtteri
Meyer, Travis A.
Pezeshkian, Weria
Gormley, Adam J.
Karonen, Maarit
Sansom, Mark S. P.
Souza, Paulo C. T.
Marrink, Siewert J.
author_sort Grünewald, Fabian
collection PubMed
description [Image: see text] The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.
format Online
Article
Text
id pubmed-9753587
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97535872022-12-16 Martini 3 Coarse-Grained Force Field for Carbohydrates Grünewald, Fabian Punt, Mats H. Jefferys, Elizabeth E. Vainikka, Petteri A. König, Melanie Virtanen, Valtteri Meyer, Travis A. Pezeshkian, Weria Gormley, Adam J. Karonen, Maarit Sansom, Mark S. P. Souza, Paulo C. T. Marrink, Siewert J. J Chem Theory Comput [Image: see text] The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach. American Chemical Society 2022-11-07 2022-12-13 /pmc/articles/PMC9753587/ /pubmed/36342474 http://dx.doi.org/10.1021/acs.jctc.2c00757 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Grünewald, Fabian
Punt, Mats H.
Jefferys, Elizabeth E.
Vainikka, Petteri A.
König, Melanie
Virtanen, Valtteri
Meyer, Travis A.
Pezeshkian, Weria
Gormley, Adam J.
Karonen, Maarit
Sansom, Mark S. P.
Souza, Paulo C. T.
Marrink, Siewert J.
Martini 3 Coarse-Grained Force Field for Carbohydrates
title Martini 3 Coarse-Grained Force Field for Carbohydrates
title_full Martini 3 Coarse-Grained Force Field for Carbohydrates
title_fullStr Martini 3 Coarse-Grained Force Field for Carbohydrates
title_full_unstemmed Martini 3 Coarse-Grained Force Field for Carbohydrates
title_short Martini 3 Coarse-Grained Force Field for Carbohydrates
title_sort martini 3 coarse-grained force field for carbohydrates
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753587/
https://www.ncbi.nlm.nih.gov/pubmed/36342474
http://dx.doi.org/10.1021/acs.jctc.2c00757
work_keys_str_mv AT grunewaldfabian martini3coarsegrainedforcefieldforcarbohydrates
AT puntmatsh martini3coarsegrainedforcefieldforcarbohydrates
AT jefferyselizabethe martini3coarsegrainedforcefieldforcarbohydrates
AT vainikkapetteria martini3coarsegrainedforcefieldforcarbohydrates
AT konigmelanie martini3coarsegrainedforcefieldforcarbohydrates
AT virtanenvaltteri martini3coarsegrainedforcefieldforcarbohydrates
AT meyertravisa martini3coarsegrainedforcefieldforcarbohydrates
AT pezeshkianweria martini3coarsegrainedforcefieldforcarbohydrates
AT gormleyadamj martini3coarsegrainedforcefieldforcarbohydrates
AT karonenmaarit martini3coarsegrainedforcefieldforcarbohydrates
AT sansommarksp martini3coarsegrainedforcefieldforcarbohydrates
AT souzapauloct martini3coarsegrainedforcefieldforcarbohydrates
AT marrinksiewertj martini3coarsegrainedforcefieldforcarbohydrates