Cargando…

Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts

[Image: see text] Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings...

Descripción completa

Detalles Bibliográficos
Autores principales: Ubertini, Mattia Alberto, Smrek, Jan, Rosa, Angelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753756/
https://www.ncbi.nlm.nih.gov/pubmed/36530522
http://dx.doi.org/10.1021/acs.macromol.2c01264
_version_ 1784851034185662464
author Ubertini, Mattia Alberto
Smrek, Jan
Rosa, Angelo
author_facet Ubertini, Mattia Alberto
Smrek, Jan
Rosa, Angelo
author_sort Ubertini, Mattia Alberto
collection PubMed
description [Image: see text] Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings also thread each other, a feature overlooked in the tree theories. Here we reconcile this dichotomy using Monte Carlo simulations of the ring melts with different bending rigidities. We find that rings are double-folded (more strongly for stiffer rings) on and above the entanglement length scale, while the threadings are localized on smaller scales. The different theories disagree on the details of the tree structure, i.e., the fractal dimension of the backbone of the tree. In the stiffer melts we find an indication of a self-avoiding scaling of the backbone, while more flexible chains do not exhibit such a regime. Moreover, the theories commonly neglect threadings and assign different importance to the impact of the progressive constraint release (tube dilation) on single ring relaxation due to the motion of other rings. Despite that each threading creates only a small opening in the double-folded structure, the threading loops can be numerous and their length can exceed substantially the entanglement scale. We link the threading constraints to the divergence of the relaxation time of a ring, if the tube dilation is hindered by pinning a fraction of other rings in space. Current theories do not predict such divergence and predict faster than measured diffusion of rings, pointing at the relevance of the threading constraints in unpinned systems as well. Revision of the theories with explicit threading constraints might elucidate the validity of the conjectured existence of topological glass.
format Online
Article
Text
id pubmed-9753756
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97537562022-12-16 Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts Ubertini, Mattia Alberto Smrek, Jan Rosa, Angelo Macromolecules [Image: see text] Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings also thread each other, a feature overlooked in the tree theories. Here we reconcile this dichotomy using Monte Carlo simulations of the ring melts with different bending rigidities. We find that rings are double-folded (more strongly for stiffer rings) on and above the entanglement length scale, while the threadings are localized on smaller scales. The different theories disagree on the details of the tree structure, i.e., the fractal dimension of the backbone of the tree. In the stiffer melts we find an indication of a self-avoiding scaling of the backbone, while more flexible chains do not exhibit such a regime. Moreover, the theories commonly neglect threadings and assign different importance to the impact of the progressive constraint release (tube dilation) on single ring relaxation due to the motion of other rings. Despite that each threading creates only a small opening in the double-folded structure, the threading loops can be numerous and their length can exceed substantially the entanglement scale. We link the threading constraints to the divergence of the relaxation time of a ring, if the tube dilation is hindered by pinning a fraction of other rings in space. Current theories do not predict such divergence and predict faster than measured diffusion of rings, pointing at the relevance of the threading constraints in unpinned systems as well. Revision of the theories with explicit threading constraints might elucidate the validity of the conjectured existence of topological glass. American Chemical Society 2022-11-28 2022-12-13 /pmc/articles/PMC9753756/ /pubmed/36530522 http://dx.doi.org/10.1021/acs.macromol.2c01264 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Ubertini, Mattia Alberto
Smrek, Jan
Rosa, Angelo
Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title_full Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title_fullStr Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title_full_unstemmed Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title_short Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts
title_sort entanglement length scale separates threading from branching of unknotted and non-concatenated ring polymers in melts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753756/
https://www.ncbi.nlm.nih.gov/pubmed/36530522
http://dx.doi.org/10.1021/acs.macromol.2c01264
work_keys_str_mv AT ubertinimattiaalberto entanglementlengthscaleseparatesthreadingfrombranchingofunknottedandnonconcatenatedringpolymersinmelts
AT smrekjan entanglementlengthscaleseparatesthreadingfrombranchingofunknottedandnonconcatenatedringpolymersinmelts
AT rosaangelo entanglementlengthscaleseparatesthreadingfrombranchingofunknottedandnonconcatenatedringpolymersinmelts