Cargando…
A novel proposed CNN–SVM architecture for ECG scalograms classification
Nowadays, the number of sudden deaths due to heart disease is increasing with the coronavirus pandemic. Therefore, automatic classification of electrocardiogram (ECG) signals is crucial for diagnosis and treatment. Thanks to deep learning algorithms, classification can be performed without manual fe...
Autores principales: | Ozaltin, Oznur, Yeniay, Ozgur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753894/ https://www.ncbi.nlm.nih.gov/pubmed/36536664 http://dx.doi.org/10.1007/s00500-022-07729-x |
Ejemplares similares
-
A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection
por: Kaya, Yasin, et al.
Publicado: (2023) -
Classification of decays involving variable decay chains with convolutional architectures
por: Tan, Justin
Publicado: (2018) -
RETRACTED ARTICLE: India perspective: CNN-LSTM hybrid deep learning model-based COVID-19 prediction and current status of medical resource availability
por: Ketu, Shwet, et al.
Publicado: (2021) -
Three-class brain tumor classification using deep dense inception residual network
por: Kokkalla, Srinath, et al.
Publicado: (2021) -
Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms
por: Yoon, Taeyoung, et al.
Publicado: (2023)