Cargando…

A FOXO1-dependent transcription network is a targetable vulnerability of mantle cell lymphomas

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Ja-Young, Hwang, Inah, Pan, Heng, Yao, Jun, Alinari, Lapo, Imada, Eddie, Zanettini, Claudio, Kluk, Michael J., Wang, Yizhe, Lee, Yunkyoung, Lin, Hua V., Huang, Xiangao, Di Liberto, Maurizio, Chen, Zhengming, Ballman, Karla V., Cantley, Lewis C., Marchionni, Luigi, Inghirami, Giorgio, Elemento, Olivier, Baiocchi, Robert A., Chen-Kiang, Selina, Belvedere, Sandro, Zheng, Hongwu, Paik, Jihye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753996/
https://www.ncbi.nlm.nih.gov/pubmed/36282572
http://dx.doi.org/10.1172/JCI160767
Descripción
Sumario:Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.