Cargando…

Prediction of Incident Dementia Using Patient Temporal Health Status

Dementia is one of the most prevalent health problems in the aging population. Despite the significant number of people affected, dementia diagnoses are often significantly delayed, missing opportunities to maximize life quality. Early identification of older adults at high risk for dementia may hel...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Sunyang, Ibrahim, Omar A., Wang, Yanshan, Vassilaki, Maria, Petersen, Ronald C., Mielke, Michelle M., St Sauver, Jennifer, Sohn, Sunghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754075/
https://www.ncbi.nlm.nih.gov/pubmed/35673119
http://dx.doi.org/10.3233/SHTI220180
_version_ 1784851107130900480
author Fu, Sunyang
Ibrahim, Omar A.
Wang, Yanshan
Vassilaki, Maria
Petersen, Ronald C.
Mielke, Michelle M.
St Sauver, Jennifer
Sohn, Sunghwan
author_facet Fu, Sunyang
Ibrahim, Omar A.
Wang, Yanshan
Vassilaki, Maria
Petersen, Ronald C.
Mielke, Michelle M.
St Sauver, Jennifer
Sohn, Sunghwan
author_sort Fu, Sunyang
collection PubMed
description Dementia is one of the most prevalent health problems in the aging population. Despite the significant number of people affected, dementia diagnoses are often significantly delayed, missing opportunities to maximize life quality. Early identification of older adults at high risk for dementia may help to maximize current quality of life and to improve planning for future health needs in dementia patients. However, most existing risk prediction models predominantly use static variables, not considering temporal patterns of health status. This study used an attention-based time-aware model to predict incident dementia that incorporated longitudinal temporal health conditions. The predictive performance of the time-aware model was compared with three traditional models using static variables and demonstrated higher predictive power.
format Online
Article
Text
id pubmed-9754075
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-97540752022-12-15 Prediction of Incident Dementia Using Patient Temporal Health Status Fu, Sunyang Ibrahim, Omar A. Wang, Yanshan Vassilaki, Maria Petersen, Ronald C. Mielke, Michelle M. St Sauver, Jennifer Sohn, Sunghwan Stud Health Technol Inform Article Dementia is one of the most prevalent health problems in the aging population. Despite the significant number of people affected, dementia diagnoses are often significantly delayed, missing opportunities to maximize life quality. Early identification of older adults at high risk for dementia may help to maximize current quality of life and to improve planning for future health needs in dementia patients. However, most existing risk prediction models predominantly use static variables, not considering temporal patterns of health status. This study used an attention-based time-aware model to predict incident dementia that incorporated longitudinal temporal health conditions. The predictive performance of the time-aware model was compared with three traditional models using static variables and demonstrated higher predictive power. 2022-06-06 /pmc/articles/PMC9754075/ /pubmed/35673119 http://dx.doi.org/10.3233/SHTI220180 Text en https://creativecommons.org/licenses/by-nc/4.0/This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
spellingShingle Article
Fu, Sunyang
Ibrahim, Omar A.
Wang, Yanshan
Vassilaki, Maria
Petersen, Ronald C.
Mielke, Michelle M.
St Sauver, Jennifer
Sohn, Sunghwan
Prediction of Incident Dementia Using Patient Temporal Health Status
title Prediction of Incident Dementia Using Patient Temporal Health Status
title_full Prediction of Incident Dementia Using Patient Temporal Health Status
title_fullStr Prediction of Incident Dementia Using Patient Temporal Health Status
title_full_unstemmed Prediction of Incident Dementia Using Patient Temporal Health Status
title_short Prediction of Incident Dementia Using Patient Temporal Health Status
title_sort prediction of incident dementia using patient temporal health status
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754075/
https://www.ncbi.nlm.nih.gov/pubmed/35673119
http://dx.doi.org/10.3233/SHTI220180
work_keys_str_mv AT fusunyang predictionofincidentdementiausingpatienttemporalhealthstatus
AT ibrahimomara predictionofincidentdementiausingpatienttemporalhealthstatus
AT wangyanshan predictionofincidentdementiausingpatienttemporalhealthstatus
AT vassilakimaria predictionofincidentdementiausingpatienttemporalhealthstatus
AT petersenronaldc predictionofincidentdementiausingpatienttemporalhealthstatus
AT mielkemichellem predictionofincidentdementiausingpatienttemporalhealthstatus
AT stsauverjennifer predictionofincidentdementiausingpatienttemporalhealthstatus
AT sohnsunghwan predictionofincidentdementiausingpatienttemporalhealthstatus