Cargando…
LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes
The identification of cell types in complex tissues is an important step in research into cellular heterogeneity in disease. We present a linear fast semi-supervised clustering (LFSC) algorithm that utilizes reference samples generated from bulk RNA sequencing data to identify cell types from single...
Autores principales: | Liu, Qiaoming, Liang, Yingjian, Wang, Dong, Li, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754124/ https://www.ncbi.nlm.nih.gov/pubmed/36531230 http://dx.doi.org/10.3389/fgene.2022.1068075 |
Ejemplares similares
-
Semi-supervised spectral clustering with application to detect population stratification
por: Liu, Binghui, et al.
Publicado: (2013) -
MSC-CSMC: A multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints for gene expression data
por: Wang, Zeyuan, et al.
Publicado: (2023) -
SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples
por: Zhang, Ze, et al.
Publicado: (2019) -
Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information
por: Dong, Li, et al.
Publicado: (2020) -
Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing
por: Herrera-Uribe, Juber, et al.
Publicado: (2021)