Cargando…
Developing a machine learning model to predict patient need for computed tomography imaging in the emergency department
Overcrowding is a well-known problem in hospitals and emergency departments (ED) that can negatively impact patients and staff. This study aims to present a machine learning model to detect a patient’s need for a Computed Tomography (CT) exam in the emergency department at the earliest possible time...
Autores principales: | Shahbandegan, Amirmohammad, Mago, Vijay, Alaref, Amer, van der Pol, Christian B., Savage, David W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754219/ https://www.ncbi.nlm.nih.gov/pubmed/36520785 http://dx.doi.org/10.1371/journal.pone.0278229 |
Ejemplares similares
-
Medical Text Simplification Using Reinforcement Learning (TESLEA): Deep Learning–Based Text Simplification Approach
por: Phatak, Atharva, et al.
Publicado: (2022) -
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
por: Lee, Hyunkwang, et al.
Publicado: (2019) -
Patient Attitudes Regarding Consent for Emergency Department Computed Tomographies
por: Weigner, Michael B., et al.
Publicado: (2014) -
Access to primary care and computed tomography use in the emergency department
por: Bellolio, M. Fernanda, et al.
Publicado: (2018) -
Determining the Need for Computed Tomography Scan Following Blunt Chest Trauma through Machine Learning Approaches
por: Shahverdi Kondori, Mohsen, et al.
Publicado: (2021)