Cargando…
Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data
Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient sp...
Autores principales: | Wei, Nana, Nie, Yating, Liu, Lin, Zheng, Xiaoqi, Wu, Hua-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754601/ https://www.ncbi.nlm.nih.gov/pubmed/36469543 http://dx.doi.org/10.1371/journal.pcbi.1010753 |
Ejemplares similares
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
por: Lin, Peijie, et al.
Publicado: (2017) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells
por: Stassen, Shobana V, et al.
Publicado: (2020) -
SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration
por: Cao, Yingxin, et al.
Publicado: (2021) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019)