Cargando…
Input correlations impede suppression of chaos and learning in balanced firing-rate networks
Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external stimuli. Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity. We show that in firing-rate networks in the balanced state, ext...
Autores principales: | Engelken, Rainer, Ingrosso, Alessandro, Khajeh, Ramin, Goedeke, Sven, Abbott, L. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754616/ https://www.ncbi.nlm.nih.gov/pubmed/36469504 http://dx.doi.org/10.1371/journal.pcbi.1010590 |
Ejemplares similares
-
Training dynamically balanced excitatory-inhibitory networks
por: Ingrosso, Alessandro, et al.
Publicado: (2019) -
Sparse balance: Excitatory-inhibitory networks with small bias currents and broadly distributed synaptic weights
por: Khajeh, Ramin, et al.
Publicado: (2022) -
On how correlations between excitatory and inhibitory synaptic inputs maximize the information rate of neuronal firing
por: Puzerey, Pavel A., et al.
Publicado: (2014) -
Optimal Input Representation in Neural Systems at the Edge of Chaos
por: Morales, Guillermo B., et al.
Publicado: (2021) -
Striatal Input- and Rate-Dependent Effects of Muscarinic Receptors on Pallidal Firing
por: Querejeta, Enrique, et al.
Publicado: (2012)