Cargando…
Implementation of a Large-Scale Image Curation Workflow Using Deep Learning Framework
PURPOSE: The curation of images using human resources is time intensive but an essential step for developing artificial intelligence (AI) algorithms. Our goal was to develop and implement an AI algorithm for image curation in a high-volume setting. We also explored AI tools that will assist in deplo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754974/ https://www.ncbi.nlm.nih.gov/pubmed/36531570 http://dx.doi.org/10.1016/j.xops.2022.100198 |
Sumario: | PURPOSE: The curation of images using human resources is time intensive but an essential step for developing artificial intelligence (AI) algorithms. Our goal was to develop and implement an AI algorithm for image curation in a high-volume setting. We also explored AI tools that will assist in deploying a tiered approach, in which the AI model labels images and flags potential mislabels for human review. DESIGN: Implementation of an AI algorithm. PARTICIPANTS: Seven-field stereoscopic images from multiple clinical trials. METHODS: The 7-field stereoscopic image protocol includes 7 pairs of images from various parts of the central retina along with images of the anterior part of the eye. All images were labeled for field number by reading center graders. The model output included classification of the retinal images into 8 field numbers. Probability scores (0–1) were generated to identify misclassified images, with 1 indicating a high probability of a correct label. MAIN OUTCOME MEASURES: Agreement of AI prediction with grader classification of field number and the use of probability scores to identify mislabeled images. RESULTS: The AI model was trained and validated on 17 529 images and tested on 3004 images. The pooled agreement of field numbers between grader classification and the AI model was 88.3% (kappa, 0.87). The pooled mean probability score was 0.97 (standard deviation [SD], 0.08) for images for which the graders agreed with the AI-generated labels and 0.77 (SD, 0.19) for images for which the graders disagreed with the AI-generated labels (P < 0.0001). Using receiver operating characteristic curves, a probability score of 0.99 was identified as a cutoff for distinguishing mislabeled images. A tiered workflow using a probability score of < 0.99 as a cutoff would include 27.6% of the 3004 images for human review and reduce the error rate from 11.7% to 1.5%. CONCLUSIONS: The implementation of AI algorithms requires measures in addition to model validation. Tools to flag potential errors in the labels generated by AI models will reduce inaccuracies, increase trust in the system, and provide data for continuous model development. |
---|