Cargando…

Analysis and dynamical transmission of Covid-19 model by using Caputo-Fabrizio derivative

The SARS-CoV-2 pandemic is an urgent problem with unpredictable properties and is widespread worldwide through human interactions. This work aims to use Caputo-Fabrizio fractional operators to explore the complex action of the Covid-19 Omicron variant. A fixed-point theorem and an iterative approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Farman, Muhammad, Besbes, Hatem, Nisar, Kottakkaran Sooppy, Omri, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755013/
http://dx.doi.org/10.1016/j.aej.2022.12.026
Descripción
Sumario:The SARS-CoV-2 pandemic is an urgent problem with unpredictable properties and is widespread worldwide through human interactions. This work aims to use Caputo-Fabrizio fractional operators to explore the complex action of the Covid-19 Omicron variant. A fixed-point theorem and an iterative approach are used to prove the existence and singularity of the model’s system of solutions. Laplace transform is used to generalize the fractional order model for stability and unique solution of the iterative scheme. A numerical scheme is also constructed by using an exponential law kernel for the computational and simulation of the Covid-19 Model. The graphs demonstrate that the fractional model of Covid-19 is accurate. In the sense of Caputo-Fabrizio, one can obtain trustworthy information about the model in either an integer or non-integer scenario. This sense also provides useful information about the model’s complexity.