Cargando…
AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study
OBJECTIVES: To evaluate the feasibility of automatic longitudinal analysis of consecutive biparametric MRI (bpMRI) scans to detect clinically significant (cs) prostate cancer (PCa). METHODS: This retrospective study included a multi-center dataset of 1513 patients who underwent bpMRI (T2 + DWI) betw...
Autores principales: | Roest, C., Kwee, T.C., Saha, A., Fütterer, J.J., Yakar, D., Huisman, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755080/ https://www.ncbi.nlm.nih.gov/pubmed/35960339 http://dx.doi.org/10.1007/s00330-022-09032-7 |
Ejemplares similares
-
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2019) -
Deep learning–assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge
por: Hosseinzadeh, Matin, et al.
Publicado: (2021) -
Liver fibrosis staging by deep learning: a visual-based explanation of diagnostic decisions of the model
por: Yin, Yunchao, et al.
Publicado: (2021) -
An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education
por: Huisman, Merel, et al.
Publicado: (2021) -
An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude
por: Huisman, Merel, et al.
Publicado: (2021)