Cargando…
Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer
OBJECTIVES: To investigate the feasibility and efficacy of a deep-learning (DL)-based three-dimensional (3D) super-resolution (SR) MRI radiomics model for preoperative T-staging prediction in rectal cancer (RC). METHODS: Seven hundred six eligible RC patients (T1/2 = 287, T3/4 = 419) were retrospect...
Autores principales: | Hou, Min, Zhou, Long, Sun, Jihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755091/ https://www.ncbi.nlm.nih.gov/pubmed/35726100 http://dx.doi.org/10.1007/s00330-022-08952-8 |
Ejemplares similares
-
Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility
por: Schurink, Niels W., et al.
Publicado: (2021) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023) -
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer
por: Xie, Yunming, et al.
Publicado: (2021) -
Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis
por: Xue, Li-Yun, et al.
Publicado: (2020) -
Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey
por: Volpe, Stefania, et al.
Publicado: (2023)