Cargando…
Tangent space alignment: Transfer learning for Brain-Computer Interface
Statistical variability of electroencephalography (EEG) between subjects and between sessions is a common problem faced in the field of Brain-Computer Interface (BCI). Such variability prevents the usage of pre-trained machine learning models and requires the use of a calibration for every new sessi...
Autores principales: | Bleuzé, Alexandre, Mattout, Jérémie, Congedo, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755175/ https://www.ncbi.nlm.nih.gov/pubmed/36530202 http://dx.doi.org/10.3389/fnhum.2022.1049985 |
Ejemplares similares
-
Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface
por: Xu, Yilu, et al.
Publicado: (2021) -
Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective
por: Mattout, Jérémie
Publicado: (2012) -
Editorial: Deep Learning in Brain-Computer Interface
por: Ahn, Minkyu, et al.
Publicado: (2022) -
An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
por: Papadopoulos, Sotirios, et al.
Publicado: (2022) -
Editorial: Women in brain-computer interfaces
por: Lugo, Zulay R., et al.
Publicado: (2023)