Cargando…
Sparse inference and active learning of stochastic differential equations from data
Automatic machine learning of empirical models from experimental data has recently become possible as a result of increased availability of computational power and dedicated algorithms. Despite the successes of non-parametric inference and neural-network-based inference for empirical modelling, a ph...
Autores principales: | Huang, Yunfei, Mabrouk, Youssef, Gompper, Gerhard, Sabass, Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755218/ https://www.ncbi.nlm.nih.gov/pubmed/36522347 http://dx.doi.org/10.1038/s41598-022-25638-9 |
Ejemplares similares
-
Generic self-stabilization mechanism for biomolecular adhesions under load
por: Braeutigam, Andrea, et al.
Publicado: (2022) -
Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells
por: Huang, Yunfei, et al.
Publicado: (2019) -
Simulation and Inference for Stochastic Differential Equations: With R Examples
por: Iacus, Stefano M
Publicado: (2008) -
Stochastic differential equations
por: Halidias, Nikolaos
Publicado: (2012) -
On stochastic differential equations
por: Ito, Kiyosi
Publicado: (1951)