Cargando…
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
The spatial transcriptome has enabled researchers to resolve transcriptome expression profiles while preserving information about cell location to better understand the complex biological processes that occur in organisms. Due to technical limitations, the current high-throughput spatial transcripto...
Autores principales: | Zhang, Yingkun, Lin, Xinrui, Yao, Zhixian, Sun, Di, Lin, Xin, Wang, Xiaoyu, Yang, Chaoyong, Song, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755226/ https://www.ncbi.nlm.nih.gov/pubmed/36544473 http://dx.doi.org/10.1016/j.csbj.2022.12.001 |
Ejemplares similares
-
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Deconvolution Tactics and Normalization in Renal Spatial Transcriptomics
por: Melo Ferreira, Ricardo, et al.
Publicado: (2022) -
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
por: Yan, Lulu, et al.
Publicado: (2022) -
SD(2): spatially resolved transcriptomics deconvolution through integration of dropout and spatial information
por: Li, Haoyang, et al.
Publicado: (2022)