Cargando…
From sequence to function through structure: Deep learning for protein design
The process of designing biomolecules, in particular proteins, is witnessing a rapid change in available tooling and approaches, moving from design through physicochemical force fields, to producing plausible, complex sequences fast via end-to-end differentiable statistical models. To achieve condit...
Autores principales: | Ferruz, Noelia, Heinzinger, Michael, Akdel, Mehmet, Goncearenco, Alexander, Naef, Luca, Dallago, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755234/ https://www.ncbi.nlm.nih.gov/pubmed/36544476 http://dx.doi.org/10.1016/j.csbj.2022.11.014 |
Ejemplares similares
-
Modeling aspects of the language of life through transfer-learning protein sequences
por: Heinzinger, Michael, et al.
Publicado: (2019) -
Protein embeddings and deep learning predict binding residues for various ligand classes
por: Littmann, Maria, et al.
Publicado: (2021) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021) -
ProtGPT2 is a deep unsupervised language model for protein design
por: Ferruz, Noelia, et al.
Publicado: (2022) -
Predicting 3D chromatin interactions from DNA sequence using Deep Learning
por: Piecyk, Robert S., et al.
Publicado: (2022)