Cargando…
The underlying neural bases of the reversal error while solving algebraic word problems
Problem solving is a core element in mathematical learning. The reversal error in problem solving occurs when students are able to recognize the information in the statement of comparison word problems, but they reverse the relationship between two variables when building the equations. Functional m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755259/ https://www.ncbi.nlm.nih.gov/pubmed/36522380 http://dx.doi.org/10.1038/s41598-022-25442-5 |
Sumario: | Problem solving is a core element in mathematical learning. The reversal error in problem solving occurs when students are able to recognize the information in the statement of comparison word problems, but they reverse the relationship between two variables when building the equations. Functional magnetic resonance images were acquired to identify for the first time the neural bases associated with the reversal error. The neuronal bases linked to this error have been used as inputs in 13 classifiers to discriminate between reversal error and non-reversal error groups. We found brain activation in bilateral fronto-parietal areas in the participants who committed reversal errors, and only left fronto-parietal activation in those who did not, suggesting that the reversal error group needed a greater cognitive demand. Instead, the non-reversal error group seems to show that they have developed solid algebraic knowledge. Additionally, the results showed brain activation in the right middle temporal gyrus when comparing the reversal error vs non-reversal error groups. This activation would be associated with the semantic processing which is required to understand the statement and build the equation. Finally, the classifier results show that the brain areas activated could be considered good biomarkers to help us identify competent solvers. |
---|