Cargando…
A fast kernel independence test for cluster-correlated data
Cluster-correlated data receives a lot of attention in biomedical and longitudinal studies and it is of interest to assess the generalized dependence between two multivariate variables under the cluster-correlated structure. The Hilbert–Schmidt independence criterion (HSIC) is a powerful kernel-base...
Autores principales: | Song, Hoseung, Liu, Hongjiao, Wu, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755291/ https://www.ncbi.nlm.nih.gov/pubmed/36522522 http://dx.doi.org/10.1038/s41598-022-26278-9 |
Ejemplares similares
-
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
por: Grosso, Gaia, et al.
Publicado: (2023) -
Fast kernel-based association testing of non-linear genetic effects for biobank-scale data
por: Fu, Boyang, et al.
Publicado: (2023) -
Adaptive kernel fuzzy clustering for missing data
por: Rodrigues, Anny K. G., et al.
Publicado: (2021) -
FFBSKAT: Fast Family-Based Sequence Kernel Association Test
por: Svishcheva, Gulnara R., et al.
Publicado: (2014) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017)