Cargando…
Selective CO(2) electroreduction to methanol via enhanced oxygen bonding
The reduction of carbon dioxide using electrochemical cells is an appealing technology to store renewable electricity in a chemical form. The preferential adsorption of oxygen over carbon atoms of intermediates could improve the methanol selectivity due to the retention of C–O bond. However, the ads...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755525/ https://www.ncbi.nlm.nih.gov/pubmed/36522322 http://dx.doi.org/10.1038/s41467-022-35450-8 |
Sumario: | The reduction of carbon dioxide using electrochemical cells is an appealing technology to store renewable electricity in a chemical form. The preferential adsorption of oxygen over carbon atoms of intermediates could improve the methanol selectivity due to the retention of C–O bond. However, the adsorbent-surface interaction is mainly related to the d states of transition metals in catalysts, thus it is difficult to promote the formation of oxygen-bound intermediates without affecting the carbon affinity. This paper describes the construction of a molybdenum-based metal carbide catalyst that promotes the formation and adsorption of oxygen-bound intermediates, where the sp states in catalyst are enabled to participate in the bonding of intermediates. A high Faradaic efficiency of 80.4% for methanol is achieved at −1.1 V vs. the standard hydrogen electrode. |
---|