Cargando…
Applying interpretable machine learning workflow to evaluate exposure–response relationships for large‐molecule oncology drugs
The application of logistic regression (LR) and Cox Proportional Hazard (CoxPH) models are well‐established for evaluating exposure–response (E–R) relationship in large molecule oncology drugs. However, applying machine learning (ML) models on evaluating E–R relationships has not been widely explore...
Autores principales: | Liu, Gengbo, Lu, James, Lim, Hong Seo, Jin, Jin Yan, Lu, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755920/ https://www.ncbi.nlm.nih.gov/pubmed/36193885 http://dx.doi.org/10.1002/psp4.12871 |
Ejemplares similares
-
Pharm‐AutoML: An open‐source, end‐to‐end automated machine learning package for clinical outcome prediction
por: Liu, Gengbo, et al.
Publicado: (2021) -
Performance of Cox proportional hazard models on recovering the ground truth of confounded exposure–response relationships for large‐molecule oncology drugs
por: Poon, Victor, et al.
Publicado: (2022) -
Editorial: Interpretable and explainable machine learning models in oncology
por: Hrinivich, William Thomas, et al.
Publicado: (2023) -
On the importance of interpretable machine learning predictions to inform clinical decision making in oncology
por: Lu, Sheng-Chieh, et al.
Publicado: (2023) -
CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
por: Wozniak, Justin M., et al.
Publicado: (2018)