Cargando…
Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756112/ https://www.ncbi.nlm.nih.gov/pubmed/36476865 http://dx.doi.org/10.1016/j.celrep.2022.111757 |
_version_ | 1784851563503681536 |
---|---|
author | Royero, Pedro Quatraccioni, Anne Früngel, Rieke Silva, Mariella Hurtado Bast, Arco Ulas, Thomas Beyer, Marc Opitz, Thoralf Schultze, Joachim L. Graham, Mark E. Oberlaender, Marcel Becker, Albert Schoch, Susanne Beck, Heinz |
author_facet | Royero, Pedro Quatraccioni, Anne Früngel, Rieke Silva, Mariella Hurtado Bast, Arco Ulas, Thomas Beyer, Marc Opitz, Thoralf Schultze, Joachim L. Graham, Mark E. Oberlaender, Marcel Becker, Albert Schoch, Susanne Beck, Heinz |
author_sort | Royero, Pedro |
collection | PubMed |
description | Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding. |
format | Online Article Text |
id | pubmed-9756112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97561122022-12-19 Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase Royero, Pedro Quatraccioni, Anne Früngel, Rieke Silva, Mariella Hurtado Bast, Arco Ulas, Thomas Beyer, Marc Opitz, Thoralf Schultze, Joachim L. Graham, Mark E. Oberlaender, Marcel Becker, Albert Schoch, Susanne Beck, Heinz Cell Rep Article Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding. Cell Press 2022-12-06 /pmc/articles/PMC9756112/ /pubmed/36476865 http://dx.doi.org/10.1016/j.celrep.2022.111757 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Royero, Pedro Quatraccioni, Anne Früngel, Rieke Silva, Mariella Hurtado Bast, Arco Ulas, Thomas Beyer, Marc Opitz, Thoralf Schultze, Joachim L. Graham, Mark E. Oberlaender, Marcel Becker, Albert Schoch, Susanne Beck, Heinz Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title | Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title_full | Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title_fullStr | Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title_full_unstemmed | Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title_short | Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase |
title_sort | circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by ste20-like kinase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756112/ https://www.ncbi.nlm.nih.gov/pubmed/36476865 http://dx.doi.org/10.1016/j.celrep.2022.111757 |
work_keys_str_mv | AT royeropedro circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT quatraccionianne circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT frungelrieke circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT silvamariellahurtado circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT bastarco circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT ulasthomas circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT beyermarc circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT opitzthoralf circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT schultzejoachiml circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT grahammarke circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT oberlaendermarcel circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT beckeralbert circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT schochsusanne circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase AT beckheinz circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase |