Cargando…

Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase

Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-...

Descripción completa

Detalles Bibliográficos
Autores principales: Royero, Pedro, Quatraccioni, Anne, Früngel, Rieke, Silva, Mariella Hurtado, Bast, Arco, Ulas, Thomas, Beyer, Marc, Opitz, Thoralf, Schultze, Joachim L., Graham, Mark E., Oberlaender, Marcel, Becker, Albert, Schoch, Susanne, Beck, Heinz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756112/
https://www.ncbi.nlm.nih.gov/pubmed/36476865
http://dx.doi.org/10.1016/j.celrep.2022.111757
_version_ 1784851563503681536
author Royero, Pedro
Quatraccioni, Anne
Früngel, Rieke
Silva, Mariella Hurtado
Bast, Arco
Ulas, Thomas
Beyer, Marc
Opitz, Thoralf
Schultze, Joachim L.
Graham, Mark E.
Oberlaender, Marcel
Becker, Albert
Schoch, Susanne
Beck, Heinz
author_facet Royero, Pedro
Quatraccioni, Anne
Früngel, Rieke
Silva, Mariella Hurtado
Bast, Arco
Ulas, Thomas
Beyer, Marc
Opitz, Thoralf
Schultze, Joachim L.
Graham, Mark E.
Oberlaender, Marcel
Becker, Albert
Schoch, Susanne
Beck, Heinz
author_sort Royero, Pedro
collection PubMed
description Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
format Online
Article
Text
id pubmed-9756112
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-97561122022-12-19 Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase Royero, Pedro Quatraccioni, Anne Früngel, Rieke Silva, Mariella Hurtado Bast, Arco Ulas, Thomas Beyer, Marc Opitz, Thoralf Schultze, Joachim L. Graham, Mark E. Oberlaender, Marcel Becker, Albert Schoch, Susanne Beck, Heinz Cell Rep Article Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding. Cell Press 2022-12-06 /pmc/articles/PMC9756112/ /pubmed/36476865 http://dx.doi.org/10.1016/j.celrep.2022.111757 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Royero, Pedro
Quatraccioni, Anne
Früngel, Rieke
Silva, Mariella Hurtado
Bast, Arco
Ulas, Thomas
Beyer, Marc
Opitz, Thoralf
Schultze, Joachim L.
Graham, Mark E.
Oberlaender, Marcel
Becker, Albert
Schoch, Susanne
Beck, Heinz
Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title_full Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title_fullStr Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title_full_unstemmed Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title_short Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase
title_sort circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by ste20-like kinase
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756112/
https://www.ncbi.nlm.nih.gov/pubmed/36476865
http://dx.doi.org/10.1016/j.celrep.2022.111757
work_keys_str_mv AT royeropedro circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT quatraccionianne circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT frungelrieke circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT silvamariellahurtado circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT bastarco circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT ulasthomas circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT beyermarc circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT opitzthoralf circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT schultzejoachiml circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT grahammarke circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT oberlaendermarcel circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT beckeralbert circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT schochsusanne circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase
AT beckheinz circuitselectivecellautonomousregulationofinhibitioninpyramidalneuronsbyste20likekinase