Cargando…
Interpretable Machine Learning Prediction of Drug-Induced QT Prolongation: Electronic Health Record Analysis
BACKGROUND: Drug-induced long-QT syndrome (diLQTS) is a major concern among patients who are hospitalized, for whom prediction models capable of identifying individualized risk could be useful to guide monitoring. We have previously demonstrated the feasibility of machine learning to predict the ris...
Autores principales: | Simon, Steven T, Trinkley, Katy E, Malone, Daniel C, Rosenberg, Michael Aaron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756119/ https://www.ncbi.nlm.nih.gov/pubmed/36454608 http://dx.doi.org/10.2196/42163 |
Ejemplares similares
-
Identifying potential drugs that induce QT prolongation using electronic medical records
por: Liu, Mei, et al.
Publicado: (2010) -
The predictive ability of the QT response in supine-standing test for drug induced QT prolongation
por: Hochstadt, A, et al.
Publicado: (2023) -
Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data
por: Mandair, Divneet, et al.
Publicado: (2020) -
Hydroxychloroquine: risk of QT prolongation and drug interactions
Publicado: (2020) -
Multiple drugs: QT prolongation: case report
Publicado: (2022)