Cargando…

Quantum prospects for hybrid thin-film lithium niobate on silicon photonics

ABSTRACT: Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform h...

Descripción completa

Detalles Bibliográficos
Autores principales: Adcock, Jeremy C., Ding, Yunhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Higher Education Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756257/
https://www.ncbi.nlm.nih.gov/pubmed/36637578
http://dx.doi.org/10.1007/s12200-022-00006-7
Descripción
Sumario:ABSTRACT: Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform has a unique set of advantages and pitfalls, which can limit their power. So far, the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics. However, thin-film lithium niobate (TFLN) is emerging as a powerful platform with unique capabilities; advances in fabrication have yielded loss metrics competitive with any integrated photonics platform, while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation. In this short review, we explore the prospects of dynamic quantum circuits—such as multiplexed photon sources and entanglement generation—on hybrid TFLN on silicon (TFLN/Si) photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow. GRAPHICAL ABSTRACT: [Image: see text]