Cargando…

Defense against membership inference attack in graph neural networks through graph perturbation

Graph neural networks have demonstrated remarkable performance in learning node or graph representations for various graph-related tasks. However, learning with graph data or its embedded representations may induce privacy issues when the node representations contain sensitive or private user inform...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kai, Wu, Jinxia, Zhu, Tianqing, Ren, Wei, Hong, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756746/
https://www.ncbi.nlm.nih.gov/pubmed/36540905
http://dx.doi.org/10.1007/s10207-022-00646-y